Cautions and Codes Related to Shafts (part 3)

The 2015 IBC code section …don’t worry, it will be painless and its SUPER useful information. Stick with me please!

Section 713 is on shaft enclosures and there are a few things you really need to know. I’m going to generalize and just tell you to go online for the specifics when you really need them (or hire me and I can give them to you).

Generally a shaft has 4 sides, a top and a bottom. Your shaft may have 3 sides or it may have 10 sides, but for simplicity we will assume it is like most shafts and has 4 sides. It MUST have a top and a bottom because remember your floors are required to have a 2 hour rating (in most concrete buildings) and the shaft has to match the floor’s rating so that you can have an unprotected hole in the floor that could potentially run the height of the building.

It has to have a bottom, which could be the ground floor, or it could be a horizontal rated assembly made of concrete, gypsum or in some cases firestop materials.

It also has to have a top. That can be the roof or again it could be one of the rated assemblies we talked about. If you have a penetration through the top or bottom of the shaft you will have to firestop those penetrations.

Guess what! If you use a horizontal gypsum assembly then there are no UL listed details for penetrations through a horizontal shaft wall assembly. You automatically have to get an EJ. Is that included in your firestop submittals? It should be!

Now the top or bottom of your shaft could be part of a room, for example if you have a trash chute or linen chute then the bottom of the shaft can be the laundry or trash room provided the surrounding walls are rated and you have no prohibited penetrations.

More on prohibited penetrations in our next post! If you have shafts on your project or are concerned that your firestop submittals might be missing something, as always contact us here.

NJ DCA CEU Classes

If you want to learn more about protecting commercial kitchen exhaust or the new requirements for AHJ’s with the need for firestop special inspection or when they are required we have some classes for you to consider.  If you want information on other classes provided by DCA please see this brochure.  Sharron is excited to be teaching these two classes again this year.  I know  we will be talking about codes and standards but we actually manage to have a bit of fun.

Are your firestop submittals missing something for shafts? (part 2)

In our last blog post we talked a little about shaft walls, what they are made of and some things to keep an eye out for. We will build on that as we go.

Today we are going to look at firestop submittals as they relate to shaft wall assemblies, so the next time you are reviewing project documents you will have a better idea if something is missing. The easiest way to understand this discussion is to quickly review the UL nomenclature post found here so this will be easier to follow. If you do not know this nomenclature its much more difficult to conduct this exercise.

First let’s think about the RATED JOINTS. Let’s assume that the project has both block shafts and gypsum shafts. As you look at the firestop submittals pull out the HW (head of wall) details and look for the types of shaft walls you have on your project. For this discussion we will assume you have both gypsum and block shaft walls.

GYPSUM WALL:

You will likely have a handful of HW details but if you have gypsum shafts you need to be sure the project has a detail for firestopping this gypsum shaft. When you look at the WL details for gypsum walls, you will notice it is not like the standard gypsum wall details, namely because the shaft walls are built differently so they need to be firestopped differently as well. This will require sealant at the shaft liner as well as on the outer layers of drywall. If you allow this wall type to be firestopped when the wall construction is complete, you will not have a compliant system because you will only have protection from one side of the wall. This would create a major liability for the installer as well as the GC, building owner and building occupants.  If you are looking at a WL2000 series detail for plastic pipes, be sure to take a closer look, but do the same for all your penetration types.

BLOCK WALL

If you have access to both sides of the wall, as you would in an elevator shaft, then it is easy to firestop the head of wall joint on a block wall from either side of the wall. Likewise you can firestop your through penetrations with either a CAJ or WJ detail. If you only have access to one side of the wall, you will need what is commonly referred to as a sandwiched detail and my guess is that it will likely be a WJ detail or possibly an engineering judgement. This would allow for firestop to be installed in four steps. Typically there would be installation of mineral wool recessed maybe 4-1/2” into the joint, then firestop sealant (let’s say it calls for ½” of sealant) then another layer of 3-1/2” of mineral wool followed by another ½” of sealant. There are 4 steps to this installation, which means 4 steps to any firestop inspection as well, unless the inspector wants to try to cut into this kind of joint application, which is going to be a challenge in and of itself. This also means that the firestop detail needs to show installation from one side if this is what the installers are doing.

That is what you expect to see when you are in the field, but when looking at the firestop submittals you need to be sure that the block wall detail that is provided can actually be installed on the project. Is it physically possible? You need to be sure there is a head of wall, bottom of wall and possibly a wall to wall detail for the gypsum assembly. It is not uncommon for a contractor to miss these details, so be on the lookout for them.

Next, think about what penetrations will be going through your shaft walls. The block and concrete walls often will not have access from the inside of the shaft so a sandwiched application needs to be used in many cases, though there are devices that can be used and installed from one side. If we are working on a project with you then we can help you determine which different manufacturers products would be best for various scenarios. Let’s say your stairwell walls are block or concrete. This means the firestop details you will need will start with either a CAJ or a WJ (potentially WK for thicker walls). You will need a 1000 series detail for your sprinkler pipes and conduits, unless you have plastic sprinkler pipes then you will need a 2000 series detail as well as a 3000 series for your MC cables. You won’t need a 7000 series detail for your ducts because they are going through a 2 hour wall and will require dampers. Pull out these details and be sure that if you only have one side access that the details will allow one sided access for the installation requirements. If not, you will need an Engineering Judgment. If you are in NJ, remember DCA does not allow EJ’s- sorry NJ.

Typically firestop installers will submit details for the various penetrations through a standard wall. These may be okay if the shaft wall type is included in what is allowed in the listed detail. If it is included, then you are fine, and if not then they need to submit a new detail. This will be found in item 1 of all details. These details will start with WL for gypsum framed walls and if it is a mechanical shaft you will likely have WL 1000 for metal pipes, WL 5000 for insulated pipes, maybe WL 2000 for plastic pipes. When doing the installation or inspection of these walls you will want to be sure to check annular space and sealant depth to be sure it conforms with the details. You will also want to be sure the installer firestops the shaft liner side before the outer two layers of drywall go up as you will see in one of the later posts.

We have given you a few things to be cautious about, but in our next post we will dig deeper into this and the building code. If you have questions about a recent firestop submittal please contact us for help.

Fire Facts- (free CEU’s)

Would you like to know how to make use of a firestop submittal in a way that will help you hold your installers accountable in a whole new way? If you are even thinking “maybe”, then you should join us for the 25th Fire Facts!  It is put on by City Fire as an educational forum and is well attended every year.

We have a new session coming up Feb 2nd in Princeton. If you join us, you will leave with a new set of skills that you can put to use the very next day (or at least the following Monday). This is hands down my favorite class to teach. Don’t get me wrong, I have fun with all of my classes, but this one is packed with valuable information…and it’s free!  Come for the CEU’s, come for the information and you will get some good food, great company and valuable information about firestop, hot works and carbon monoxide.

If you want to join us, please contact Melissa Palmisano for more details and to register. She can be reached at melissa@cityfire.com.

HOPE TO SEE YOU IN PRINCETON!

I Have a Bone to Pick with Insurance Companies (It’s not what you might think)

The NEW YEAR started with me doing a training seminar at Seton Hall. Paul McGrath of City Fire invited me to speak at their 25th Fire Facts Seminar and it was awesome. I had so much fun, jumping around on a huge stage talking about building codes, standards, firestop and passive fire protection. Those of you who have been in my classes know what a dork I am, and how much I love it!

At lunch I sat with a few guys.  One who had been in one of my previous classes. Like most of us, he wears many hats. One is arson investigator.

During lunch our discussion bounced to raising kids with integrity and teaching them to be accountable for their actions.  We talked about how, if there are no consequences to the kids negative behavior, then the behavior won’t change.  I confessed to having stolen a candy bar when I was a kid and told of how my mother made me take it back into the store, give it back to the lady, apologize and tell her why it was wrong.   One of the guys had done the same thing with his young son and a pack of gum.

I was struck by the fact that there was a direct connect to this parenting move and the way I was hearing the insurance company is currently handling fire cases. As a parent, there has to be consequences to a child’s behavior; positive consequences to positive behavior and negative consequences to negative behavior.  What I was hearing at lunch was making it clear that the insurance industry needed help learning how to hold contractors and building owners accountable.

Rather than put in the legwork to identify construction that did not conform to the codes, the insurance companies just paid out the claims. This means that the contractor, who didn’t do the job right and created a scenario where a fire was allowed to propogate, or even started due to non-code-conformant installations, has no negative consequences for bad installations.  This is only letting people off the hook.

Now, I will be the first to tell you, I don’t know a great deal about insurance! I will also tell you that I do not want to offend anyone with this post. What I do want to accomplish with this is to:
1) raise awareness
2) start a conversation
3) be a catalyst for positive change in the industry

We all know what it typically takes for people to sit up and take notice. DEATH or massive loss always gets people’s attention. Then the masses cry, “How could this happen?

Trying to initiate change before you have everyone’s attention is not the easy route, but I would like to do just that before it comes to something tragic and I am asking for help from the Linked In community.

What ideas do you have regarding how we can have a positive impact that will help insurance companies be able to hold contractors accountable. I know a few years ago there was a case where a building owner did not maintain their sprinkler system and the insurance company did not have to pay out.  That old post can be found here.

If you have any ideas of how to help or if you can answer any of these questions please shoot me an quick note (or a long one if you prefer).  Your help may be the catalyst to the positive change we all need to see.

What events/trade shows/conferences would be interested in hearing more about this?

Do you have any contacts who could help with this agenda?

Do you have any ideas or data that would be useful in initiating this change?

 

As always, thank you all for reading this diatribe.  Keep Learning!  Do better every day and on the days you don’t; just remember there is tomorrow and take advantage of that when the day arrives.

How Fire Rated Assemblies Are Tested

It’s a New Year, so I thought I would play around with a new medium. I have pulled up a few old videos from various training segments I’ve recorded in the past 5 years. Here is a brief general discussion about how rated assemblies are tested. There is so much more I want you to know about this, but this is not a bad start and it segues into some of the older blog posts we have shared.

In order to make this information practical, so you can use it in the field, please remember that knowing how assemblies are tested helps you understand how they fail when not properly installed. Think about the hose stream test when you are looking at applications with large annular space, with insufficient annular space or installations with just a smear of sealant. These are both critical to the performance of a firestop installation.  The various hyperlinks will bring you to different segments for further discussion if you are interested in learning more.

Please share this with anyone you think might benefit from this information.

As always, if you have any questions or even topics for future blog posts, don’t hesitate to reach out to us.  We are happy to help when we can.

 

UPDATE: Jan 6

I want to give a HUGE shout out to RICK BARONE for making  a correction for me. This video clip was edited from one of the first classes I did when I started teaching again, and as with most things we are new at, there were errors.  I noticed it during editing a few months ago but forgot to comment on it when I posted it.  Rick says it better than I could so I will just include his comments here and say THANK YOU RICK.  I love when people support others to do better.

“You have some inaccuracies in the video…The time temperature curve is controlled by the test facility….If your test specimens furnace isn’t at 1000f at 5 minutes it will be because the lab tech didn’t maintain the time temp curve within the prescribe tolerance. The customer doesn’t fail, the lab must abort the test and rerun..usually at their own cost if they are a credible lab…but a nice start with a new communication vehicle..” Rick Barone 1/5/2017

Firestop Classes in New Jersey

Hi everyone,

I am excited to announce the schedule for Rutgers Fall classes.  There are  heaps of great classes available in this program, but the ones I am teaching are:

Understanding the Requirements of Firestop Special Inspection- 1705.17

Special inspection (SI) of firestop is a requirement in NJ and since there is no licensing process the local jurisdictions (AHJ) are responsible for ensuring that the contracted inspector is actually qualified.  This class goes over the reporting requirements and a few ways to identify if your SI is up for the job.  Participants will even walk away with a few inspection tricks up their sleeve to try out on their next project.  This class is designed to help the AHJ’s keep the hacks out of their jurisdiction. While there are three slides specific to the NJ building codes, most of the information relates to ASTM E2174, ASTM E2393 and ASTM E3038 and the Chapter of the IBC as it relates to special inspection of firestop.

My favorite comment about this class last semester: “That changes everything!”

Classes will be on Friday, Nov 6 in Parsippany NJ & Thursday, Nov 16 in Cape May NJ


Inspecting Grease Duct Wrap-

We have a bit of fun in this class and do a hands on installation of grease duct wrap on an actual duct.  Okay, so its not a “real” grease duct, because I have to schlep it into the class room and screw it together.  It would fail the light test with your back turned. But the installation is real, the installers and inspectors are real, and the other materials are exactly what is used in the field.  We do an inspection and learn how the mock field installation would fail the required lab tests.  This helps the participants be able to take the technical information into the field more effectively.  Then we talk about some more complication installations, what to look for during inspections.  We end with a discussion of the various materials that are found in the field and this semester we hope to have samples of the factory insulated materials so we can add this to the discussion.

My favorite comment about this class last semester: (at our first break about 90 minutes into a 5 hour class) “I only signed up for the class because I needed the credits for my license.  I didn’t think there was really anything for me to learn here.  My class yesterday was great.  I expected to learn a lot, and I did.  I gotta say though, I’ve learned more in this class already, than I did all day yesterday. “

Tuesday, Nov 28 in Evesham NJ & Tursday, Dec 14 in Sayreville NJ

 

If you are interested in joining any of these classes, or having us present the class in your area,  please email us.

Inspecting firestop- Can you see the issue?

 

This is a 1-hour wall that separates an exit corridor from a condo unit. We are looking at it from the unfinished condo side and the firestop has been installed from the corridor side. From the corridor side of the wall, the installation looks good at a glance. The firestop is installed the full circumference around the cables. The cables are rigidly supported as required by the UL listing. The installer used an intumescent material that matches the submitted UL listed detail. When the wall is complete these MC cables will not penetrate the room side of the wall so technically this is a membrane penetration rather than a through penetration, but UL requires the same installation regardless of this fact. Bare in mind, this is changing and UL is requiring that membrane penetrations be tested separately, because they may perform differently than a through penetration. Stay tuned for more on these changes in the coming posts. Can you tell what is wrong with this installation? Better yet, can you explain why it is wrong and more importantly, two other issues. 1) What might the impact be in a fire scenario? 2) How might this improper installation impact the project over time?

 

 

Most UL listed firestop details will require 5/8” depth of sealant. I can tell you that the installer did not achieve even half of that. If you look closely, you too can see this just from looking at the picture. You can see that there are 2 layers of drywall. You can see an ever so faint line at the top of the opening where the papers from both layers of drywall are in contact. That means that the line between the two layers of drywall would mark 5/8” depth of sealant. As you can see, the installer did not even come close to achieving the required depth on this installation. Then, if you want to go on further to critique this installation, there is very little drywall between the hole on the left and the center hole. Furthermore, there is NO drywall between the center hole and the one on the right, so technically this is one opening. As such, most UL listed details will require that the cables be tightly bundled, which they are not. When cables are loosely laid together, there are a few problems. First, the installer can’t easily get sealant between the gaps around the cables; so this means the sealant depth is not achieved. Further, the gaps increase the risk of cables moving and the chance of the sealant pulling away from the opening or adjacent cables is increased which can lead to a failure of this installation in a fire scenario. These gaps are a weak point for both reasons.

 

Impact in a fire scenario: One of the steps in testing a firestop system is a hose stream test.  This portion of the test is designed to judge the integrity or durability of the installation because during a fire there is a lot of pressure in the room of origin and a lot of movement of the various elements in the building.  We want to know that the firestop system will have the integrity to withstand the impact of these things.  Every fire will be different, so no one can say for certain what dynamics any firestop application must endure, but if a PROPERLY installed firestop system is subject to a real world fire scenario we have a good idea of how it will perform. This installation is not a properly installed firestop system and while I can say it will definitely fail, I can say that this installation presents a liability for the firestop installer, the electrical contractor, the GC or CM, the owner, the buildings insurance company and the occupants of the building.   Don’t worry, the firestop contractor was required to remediate this particular problem on this project.  Please make sure they do the same on your project. For more information about the hose stream test check out these other blog posts as well. Here is one example.

 

Impact over life cycle of the building: There are a myriad reasons why the cables in this picture might be bumped, jostled or otherwise moved in a way that could dislodge the thin layer of firestop. However if the sealant is installed at the required depth of 5/8” and there is movement, the firestop material will likely still remain in the annular space of the opening. This means, it will be in the proper location so it can perform as expected, even if it pulls out of the wall slightly over time.

Protecting Cables in Rated Assemblies

Here is a great article by a fellow blogger and fire code junkie. I hope you enjoy. This is appropriate considering a conversation I just had about the Avalon fire here in New Jersey.  Cables run unprotected through rated walls and draftstopping after the building was inspected and signed off, was considered a considerable contributing factor in how the fire was allowed to spread rapidly through the entire building.

I will be back with you again soon with more of my own stuff just for you.

For now, I will leave you with Mr. Johnson!

Enjoy!

Understanding Hose Stream Test- Part 3 Annular Space and Sealant Depth

Hose Stream part 3 annular space and sealant depth

Now that you understand the hose stream test a bit more, let’s look at why this information might change the way you inspect firestop. In this segment we will examine two very common errors we find on construction projects.   The first is a problem with sealant depth. The second is a problem with annular space, which may actually impact the sealant depth.

 

As Chad pointed out in his article we shared previously, a thin layer of sealant will not survive the hose stream test. This is why it is important to conduct destructive testing when evaluating firestop installations (both penetrations and rated joints). If the penetration firestop assembly is installed in concrete, there is a good chance that mineral wool is a required backing material. Often, if the installer is not careful how they pack the mineral wool, it will be lumpy. When the firestop is installed over the lumpy backing material the sealant depth will be irregular. It may be thicker than required in one area and to thin in another area. The area where it is too thin can easily be the very spot the hose stream test would fail, if your field assembly were subjected to the laboratory test. This happens both in penetrations and in joint applications where any form of backing material may be used. This is why destructive testing is so critical to ensuring installation conforms to the tested and listed systems. If you are in a jurisdiction where destructive testing is not allowed, I would challenge you to walk the site when the installer is working and check the way they pack the mineral wool before they install the sealant. If it is not compacted uniformly, then the sealant won’t be installed uniformly. If you are going to conduct destructive testing, this quick preliminary walk will give you some insight to what you can expect when you start your inspection.   If you are in a jurisdiction that prohibits destructive testing, this can be invaluable to identifying whether or not the installations might conform to the standards.

 

The next problem we often find is related to the annular space. Let’s revisit the scenario presented when we talked about annular space and continual point contact. We have a contractor who uses a 1” hole saw to make a hole for a 1” pipe. It may sound good, but it’s going to create a problem for a good firestop contractor. The firestop tested and listed assembly will call for a required sealant depth. The sealant needs to be installed in the annular space, which means the assembly into which the firestop is to be installed needs to actually HAVE annular space. Let’s paint a picture in your head of what would happen when a firestop contractor smears sealant around the edge of the pipe to make it look like there is sealant in the right place. Through the life of the building any movement of the penetration cause by pipe hammer, thermal expansion, pipe vibration or anything else would cause this thin layer of sealant to crack or pull away from the wall. Some firestop materials set up rather hard and would crack sooner than other more pliable materials but some form of failure would eventually happen to any material even before subjected to a fire scenario. Now if we take same installation that we have in your head and subject it to the test requirements even before the issues we previously noted have had a chance to occur, the picture you have in your mind should include water coming through the test assembly when it fails the hose stream test. But wait you say, the drywall would stop the water from going through, wouldn’t it? Sorry to say, its not likely. Let’s look at why!

 

The drywall on the fire side of the assembly is sacrificial and the only thing really stopping the fire is the drywall and the firestop on the non-fire side. Now let’s assume you have a metal pipe, it is going to draw heat through the wall. This will likely char the non-fire side drywall weakening it and creating a scenario where the assembly will fail the hose stream test, so sorry. If you think the drywall will stop the fire in this scenario you are mistaken. It will be brittle and will fail once exposed to the hose stream test.

 

Next post we will paint a picture that is even more bleak and we will look at how this simple error can create an even bigger problem.  If you want to be sure this is not happening on your project, check back and see where we go with this. Until then, keep learning and keep making buildings safer.